Minimally Redundant Laplacian Eigenmaps
نویسنده
چکیده
Spectral algorithms for learning low-dimensional data manifolds have largely been supplanted by deep learning methods in recent years. One reason is that classic spectral manifold learning methods often learn collapsed embeddings that do not fill the embedding space. We show that this is a natural consequence of data where different latent dimensions have dramatically different scaling in observation space. We present a simple extension of Laplacian Eigenmaps to fix this problem based on choosing embedding vectors which are both orthogonal and minimally redundant to other dimensions of the embedding. In experiments on NORB and similarity-transformed faces we show that Minimally Redundant Laplacian Eigenmap (MR-LEM) significantly improves the quality of embedding vectors over Laplacian Eigenmaps, accurately recovers the latent topology of the data, and discovers many disentangled factors of variation of comparable quality to state-of-the-art deep learning methods.
منابع مشابه
Coloring of DT-MRI Fiber Traces Using Laplacian Eigenmaps
We propose a novel post processing method for visualization of fiber traces from DT-MRI data. Using a recently proposed non-linear dimensionality reduction technique, Laplacian eigenmaps [3], we create a mapping from a set of fiber traces to a low dimensional Euclidean space. Laplacian eigenmaps constructs this mapping so that similar traces are mapped to similar points, given a custom made pai...
متن کاملDimension reduction for hyperspectral imaging using laplacian eigenmaps and randomized principal component analysis:Midyear Report
Hyperspectral imaging has attracted researchers’ interests in recent years. Because of its high dimensionality and complexity, the reduction of dimension of hyperspectral data sets has become crucial in processing and categorizing the data. In this project, I will apply two methods of dimension reduction: laplacian eigenmaps and randomized principal component analysis in order to reduce the dim...
متن کاملConvergence of Laplacian Eigenmaps
Geometrically based methods for various tasks of data analysis have attracted considerable attention over the last few years. In many of these algorithms, a central role is played by the eigenvectors of the graph Laplacian of a data-derived graph. In this paper, we show that if points are sampled uniformly at random from an unknown submanifold M of RN , then the eigenvectors of a suitably const...
متن کاملMagnetic Eigenmaps for Visualization of Directed Networks
We propose a framework for visualization of directed networks relying on the eigenfunctions of the magnetic Laplacian, called here Magnetic Eigenmaps. The magnetic Laplacian is a complex deformation of the well-known combinatorial Laplacian. Features such as density of links and directionality patterns are revealed by plotting the phases of the first magnetic eigenvectors. Directed networks bei...
متن کاملStratified Structure of Laplacian Eigenmaps Embedding
We construct a locality preserving weight matrix for Laplacian eigenmaps algorithm used in dimension reduction. Our point cloud data is sampled from a low dimensional stratified space embedded in a higher dimension. Specifically, we use tools developed in local homology, persistence homology for kernel and cokernels to infer a weight matrix which captures neighborhood relations among points in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018